SOLUTION
First, determine the number of moles of chloride ion present in 0.987 g of nickel(II) chloride (NiCl2):
n_text{Cl}^- = 0.987 g NiCl_2 times frac{1 mol NiCl_2}{129.60 g NiCl_2} times frac{2 mol Cl^-}{1 mol NiCl_2} = 0.0152 mol Cl^-
Next, we need to account for the chloride ions already present in the 150. mL of 68.0 mM potassium carbonate (K2CO3) solution:
n_text{Cl}^- (initial) = 150 mL times frac{1 L}{1000 mL} times 68.0 mmol/L times frac{1 mol}{1000 mmol} = 0.0102 mol Cl^-
The total moles of chloride ions in the final solution is the sum of the initial moles and the moles added from NiCl2:
n_text{Cl}^- (total) = 0.0152 mol Cl^- + 0.0102 mol Cl^- = 0.0254 mol Cl^-
Finally, we can calculate the final molarity of chloride ions:
[Cl^-] = frac{0.0254 mol Cl^-}{0.150 L solution} = boxed{0.170 M}
The final molarity of chloride anion in the solution is 0.170 M.